

Persist creation and update timestamps

www.thoughts-on-java.org

@CreationTimestamp and @UpdateTimestamp
Hibernate's @CreationTimestamp and @UpdateTimestamp
annotations make it easy to track the timestamp of the creation and
last update of an entity. The only thing you have to do is to add the
annotation to an entity attribute.

When a new entity gets persisted, Hibernate gets the current
timestamp from the VM and sets it as the value of the attribute
annotated with @CreationTimestamp. After that, Hibernate will not
change the value of this attribute.

The value of the attribute annotated with @UpdateTimestamp gets
changed in a similar way with every SQL Update statement.

Hibernate gets the current timestamp from the VM and sets it as the
update timestamp on the SQL Update statement.

Supported attribute types
You can use the @CreationTimestamp and @UpdateTimestamp with
the following attribute types:

 java.time.LocalDate (since Hibernate 5.2.3)
 java.time.LocalDateTime (since Hibernate 5.2.3)
 java.util.Date
 java.util.Calendar
 java.sql.Date
 java.sql.Time
 java.sql.Timestamp

http://www.thoughts-on-java.org/

Persist creation and update timestamps

www.thoughts-on-java.org

Example
As you can see in the following code snippet, I just added the
@CreationTimestamp annotation to the createDateTime attribute
and the @UpdateTimestamp annotation to the updateDateTime
attribute.

@Entity

public class MyEntity {

@Column

@CreationTimestamp

private LocalDateTime createDateTime;

@Column

@UpdateTimestamp

private LocalDateTime updateDateTime;

 …

}

http://www.thoughts-on-java.org/

